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Where does insulin resistance start? The adipose tissue

Patricia lozzo, mp, PHD

dipose tissue is a heterogeneous or-

gan with respect to embryonic origin,

body distribution, and function. In
addition to playing a major role in the reg-
ulation of nutrient and energy homeosta-
sis, it is involved in the modulation of the
immune response, reproductive function,
hemostasis, mechanical support, bone
mass growth, and thermogenesis.

To postulate that insulin resistance
starts in adipose tissue, there should be
evidence of 1) potential mechanisms for
such a causal relationship, 2) the manifes-
tation of such mechanisms in insulin-
resistant individuals, and 3) their early
occurrence in the development of insulin
resistance.

PLAUSIBILITY: ADIPOSE
TISSUE CAN CAUSE INSULIN
RESISTANCE — Adipose tissue re-
leases a variety of factors known to mod-
ulate insulin sensitivity, and their effects
are summarized in Fig. 1.

Fatty acids

The concept that fatty acids (FAs) pro-
voke cardiac, skeletal muscle, and hepatic
insulin resistance and impair B-cell func-
tion has been extensively confirmed in
humans, and mechanisms are reviewed in
detail elsewhere (1). A sustained pharma-
cologic inhibition of lipolysis, with reduc-
tion in the plasma FA concentration,
reverses these defects (2—4). Elevated FA
levels also promote the synthesis and re-
lease of VLDL by the liver by 1) increasing
substrate availability, 2) inhibiting insu-
lin-mediated apoB degradation (5), and
3) reducing hepatic insulin clearance,
contributing to hyperinsulinemia. In the
brain, excessive FA uptake and its re-

sponse to weight loss have been docu-
mented in subjects with the metabolic
syndrome (6), and FAs are implicated in
the central regulation of glucose produc-
tion (7).

FA overflow from adipocytes to skel-
etal muscle and other tissues may result in
free radical formation during oxidative
phosphorylation, the intramyocellular
accumulation of triglyceride, and the
production of toxic lipid metabolites
(fatty-acyl CoAs, diacylglycerol, and cer-
amides) and metabolic intermediates,
which reflect oxidative damage (4), both
of which can interfere with the insulin sig-
naling cascade. Consistent with this hy-
pothesis, lipid oxidation is increased
systemically and regionally, i.e., in the
myocardium and skeletal muscle, and in
the liver in states of insulin resistance
and/or in steatosis (8—-10), and recent ev-
idence supports a role of B-cell oxidative
stress in mediating FA-induced {-cell
dysfunction (11). Local production of re-
active oxygen species within adipose tis-
sue likely initiates lipotoxicity and insulin
resistance at the immediate site of FA re-
lease (12). Oxidative damage is amplified
by peroxidation of lipid stores and could,
in turn, impair mitochondrial function
and insulin sensitivity and produce in-
flammation in different target organs.

Adipokines

Adipose tissue is the largest endocrine or-
gan in the body and generates multiple
signals that regulate metabolism in other
tissues. Leptin acts centrally to enhance
the resting metabolic rate and decrease
appetite, thus reducing tissue triglyceride
accumulation. In lipodystrophic humans
with severe insulin resistance, the admin-
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istration of leptin restores insulin sensitiv-
ity and reduces organ steatosis and
hyperglycemia (13). However, leptin de-
ficiency and resistance are rare causes of
disease in humans. Interestingly, leptin
receptors have been identified in the ves-
sel wall, and leptin infusion increases ar-
terial blood pressure (14). Adiponectin is
produced by adipose tissue in inverse
amounts to the fat mass and is one rel-
evant mediator of the action of peroxi-
some proliferator—activated receptor-y
(PPAR-v) agonists. Administration of
adiponectin reverses the insulin resis-
tance associated with obesity or lipodys-
trophy by reducing FA and triglyceride
levels (15). Plasma adiponectin concen-
trations typically are reduced in obese
normal glucose tolerant, insulin-resistant
and lean, and obese type 2 diabetic sub-
jects, and decreased plasma adiponectin
levels are predictive of hepatic steatosis
and insulin resistance. However, the ob-
servation that weight loss has a dramatic
effect on insulin sensitivity without
change in the plasma adiponectin con-
centration mitigates against a causal role
of this hormone in the pathogenesis of
insulin resistance (16). The role of resis-
tin, which is elevated in animal models of
obesity and diabetes, and of visfatin and
omentin (which are produced by visceral
fat) in the development of insulin resis-
tance remains controversial.

Adipocytokines

Tumor necrosis factor (TNF)-o stimu-
lates adipose tissue lipolysis, promotes
VLDL production (17), interferes with in-
sulin signaling and expression of adi-
ponectin, and increases the expression of
interleukins. In humans, tissue expres-
sion, rather than circulating levels of
TNF-a, correlates with obesity and insu-
lin resistance (18). Interleukin (IL)-6 also
is associated with insulin resistance, in-
creased fat mass, and elevated circulating
FA levels, consistent with the lipolytic ac-
tion of this cytokine. IL-6 interferes with
the insulin signaling pathway in hepato-
cytes, skeletal muscle, and adipose tissue
(19) and inhibits the production of
adiponectin.
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Figure 1—Adipose tissue is the largest endocrine organ in the body. The diagram summarizes the main roles and effects of representative fat-derived
products that have been related to insulin resistance and metabolic risk. BP, blood pressure; HR, heart rate.

Glucocorticoids and
endocannabinoids
Sex steroids and corticosteroids have a
major impact on fat distribution and en-
zymes involved in steroid synthesis and
metabolism, such as 11-f hydroxysteroid
dehydrogenase (11-B-HSD1) (20) and
aromatase, and are present in adipose tis-
sue. Activation of 11-B-HSD1 results in
tissue-specific glucocorticoid excess,
causing central obesity with increased fat
cell size, insulin resistance, hyperglyce-
mia, hyperlipidemia, and hypertension.
In obese Zucker rats, adipose, but not he-
patic, tissue expression of 11-B-HSD1 is
increased. In humans, subcutaneous adi-
pose tissue expression and activity of 11-
B-HSD1 correlate with indexes of obesity.
In adipose tissue, fat-specific over-
production of endocannabinoids reduces
adiponectin expression, decreases adi-
pose tissue energy expenditure and fat ox-
idation, and enhances lipogenesis. Recent
evidence demonstrates that insulin inhib-
its the synthesis of endocannabinoids and
that fat-specific insulin resistance may be
responsible for the augmented plasma en-
docannabinoid levels found in insulin-
resistant states. The increased plasma
endocannabinoid levels could influence
liver, muscle, and brain regulation of glu-
cose homeostasis (21).

EVIDENCE FOR ADIPOSE
TISSUE DYSFUNCTION AND
ALTERED TOPOGRAPHY IN
INSULIN RESISTANCE — By bulf-

ering postprandial FA influx, adipose tis-

sue plasticity plays an important role in
controlling nutrient supply to other or-
gans, and the ability of adipocytes to dis-
pose of ingested fat load is impaired in
both obesity and lipodystrophy (22). Ad-
ipose tissue is composed of adipocytes,
pre-adipocytes, nerves, macrophages, fi-
broblasts, and vascular cells, and this con-
stitutes a network that can lead to a
variety of dysfunctional manifestations.

Adipocyte size and buffering ability

Adipocytes can maximally store ~0.8 ng
lipid per cell. Larger adipocytes become
insulin resistant, leading to reduced tri-
glyceride and glucose clearance. Lean off-
spring of type 2 diabetic subjects, who do
not manifest overt insulin resistance and
who have no apparent metabolic or he-
modynamic abnormalities (23), have a
significant enlargement in adipocyte size,
enhanced regional subcutaneous glycerol
release in response to insulin, and normal
FA levels. In Pima Indians, large fat cell
volume and circulating FA levels are an
independent predictor of the future de-
velopment of diabetes (24). Interventions
that reduce adipocyte size, either by in-
creasing the total amount of fat via re-
cruitment of new adipocytes (e.g.,
thiazolidinediones) or by depleting tri-
glyceride stores in existing fat cells (e.g.,
exercise, diet), reverse most of the fea-
tures associated with fat dysfunction.
Smaller adipocytes have more buffering
capacity, and this may explain the link
between the decrease in adipocyte size
and reversal of insulin resistance. Indeed,

ob/ob PPAR-y2 knockout mice are lean
and have a reduced number of small adi-
pocytes. They develop an early defect in
GLUT#4 expression in adipose tissue, se-
vere insulin resistance, B-cell failure, and

dyslipidemia (25).

Adipose tissue metabolism,
perfusion, and inflammation

Adipose tissue accounts for 10-20% of
whole-body glucose utilization. Insulin-
mediated glucose disposal is impaired in
obese nondiabetic subjects and patients
with type 2 diabetes. It has been sug-
gested that expansion of fat mass partly
compensates for the defect in insulin ac-
tion, supporting a role for adipose tissue
in attenuating insulin resistance (26). No-
tably, fat-specific GLUT4 deletion causes
whole-body insulin resistance, whereas
muscle GLUT4 ablation stimulates adi-
pose tissue glucose disposal (27). Recent
data in humans document higher fasting
FA uptake in adipose tissue in obese sub-
jects (28). Circulating FA levels are typi-
cally increased in insulin-resistant states
and generally correlate with the severity
of insulin resistance; normal FA levels
may be observed, if a compensatory in-
crease in FA clearance occurs. An acute
increase in FFA concentrations in normal
subjects leads to acute cellular inflamma-
tion, as revealed by the increase in nuclear
factor kB and macrophage migration in-
hibitory factor. Both of these factors have
been implicated as potential causes of in-
sulin resistance, thus suggesting an addi-
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tional indirect mechanism of FA-induced
insulin resistance (29).

Adipose tissue blood flow is reduced
in obese nondiabetic and type 2 diabetic
subjects (22), and this could lead to a de-
fect in triglyceride clearance by adipo-
cytes and FA spillover from adipose
tissue. The perfusion defect may be due,
in part, to adipocyte enlargement, which
cannot be compensated by adequate an-
giogenesis (30). The diameter (140-180
pm) achieved by enlarged adipocytes is
greater than the diffusion distance of ox-
ygen, thus limiting the exchange between
blood and adipocyte cytoplasm. Hypoxia
may inhibit adipocyte differentiation and
adiponectin expression, promote forma-
tion of free radicals and inflammation
(31), and lead to cell death. Consistent
with this, macrophages in adipose tissue
are localized primarily around dead adi-
pocytes (32). Increased numbers of mac-
rophages in fat are observed in obese
individuals, and newly recruited macro-
phages have a greater increase in proin-
flammatory properties than resident ones
(33). Inflammation and macrophage infil-
tration intensify with increasing obesity
and can be reversed by weight loss (34).

Adiposity and fat topography

In humans, white adipose tissue is found
in the subcutaneous, intra-abdominal,
epicardial, extramyocellular, perivascu-
lar, lymphnodal, retroorbital, and facial
regions. It also is present in bone marrow
and mammary gland. Brown fat occurs
during fetal development, with some
remnants in the mediastinal, paraverte-
bral, and neck areas in adults (35). Each
depot has specific gene expression and
different responsiveness to nutrients, hor-
mones, and temperature, thereby reflect-
ing specific tasks. Metabolically active fat
in the intra-abdominal, intermuscular,
perivascular, and epicardial areas may
serve for the immediate provision of en-
ergy to respective vital organs (i.e., liver,
heart, vessels, and skeletal muscle). By di-
rectly providing FAs to the liver, visceral
fat also represents a source of ketones for
the brain. Omental fat acts as a sensor that
regulates the disposal of ingested nutri-
ents and directs their delivery from the
liver to the rest of the body, with feedback
to the brainstem through autonomic neu-
rons (36). Deep subcutaneous adipose
tissue in the trunk is restrained by the
fascia superficialis and can nourish the
underlying extensive muscle apparatus.
These adipose depots share similarities in
adipocytokine and FA release patterns

and display resistance to insulin (37-39).
Compared with visceral adipocytes, su-
perficial subcutaneous adipose tissue
primarily serves as a storage organ, con-
sistent with its anatomical location, re-
sponse to the anabolic action of insulin,
and its more efficient proliferation and dif-
ferentiation in vitro (40). Thus, relative in-
sulin resistance in intra-abdominal fat and
intrathoracic and intermuscular depots op-
timizes their ability to release energy to
proximal organs, while limiting the expan-
sion upon surrounding structures.

Epidemiological evidence demon-
strates that obesity, high energy intake, and
sedentary lifestyle are significant contribu-
tors to the epidemic of chronic disease, i.e.,
type 2 diabetes and atherosclerosis, related
to insulin resistance. However, despite
similar lifestyles, 1) some subjects are
more susceptible to weight gain than oth-
ers; 2) insulin sensitivity varies over a
wide range in obese and lean individuals;
3) ~20% of obese individuals do not de-
velop metabolic abnormalities, whereas
18% of lean subjects do (41); and 4) el-
derly individuals, offspring of diabetic
parents, and lipodystrophic subjects are
typically insulin resistant despite a lean
phenotype.

These apparent incongruities can be
reconciled by postulating that a defect in
subcutaneous adipose tissue expandabil-
ity, independent of body weight or adi-
posity, may be the primary cause of
insulin resistance. In fact, hyperplastic
obesity—in which newly differentiated
adipocytes maintain the ability to store
triglycerides—is typically more benign
than fat hypertrophy. Longitudinal stud-
iesin Pima Indians (42) have documented
that insulin-sensitive subjects, in whom
the anabolic effect of insulin is enhanced,
gain more weight and have a fourfold
more rapid decline in insulin sensitivity
than less insulin-sensitive individuals.
Thus, both fat mass and insulin resistance
should be regarded as relative and dy-
namic features, and this could explain the
relatively weak correlation between the
two variables.

The primacy of defective subcutane-
ous fat storage versus visceral fat enlarge-
ment in the development of metabolic
complications is supported by evidence in
patients with total lipodystrophy, who ex-
perience severe insulin resistance despite
the lack of visceral fat. In addition, treat-
ments that selectively augment the ability
of subcutaneous tissue to take up and
store fat (including glitazones in humans
and subcutaneous fat re-implantation in

animals [43]) have a major impact to re-
verse insulin resistance and normalize
metabolic risk factors without modifying
(or even increasing) the total mass of ec-
topic fat depots. Conversely, liposuction
fails to correct the metabolic distur-
bances, i.e., insulin resistance and glucose
intolerance, in obese humans (44); this
may be partly accounted for by the fact
that lifestyle is not modified, and macro-
nutrient intake is a demonstrated source
of oxidative stress and inflammation, po-
tentially interfering with insulin signaling
(45—47). Subcutaneous tissue is at least
10-fold larger than visceral fat mass, and
its production of FAs and adipokines out-
weighs the contribution of those from
nonsubcutaneous fat depots. The imme-
diate consequence of a defect in sub-
cutaneous storage capability is the
uncontrolled outflow of substrates (FAs)
and compensatory expansion of alterna-
tive fat depots or deposition of triglycer-
ides in nonadipose tissues. Thus, removal
of part, or all, of a fat depot leads to ex-
pansion of alternative fat tissue (48).

A high visceral-to-subcutaneous fat
mass ratio correlates closely with the met-
abolic syndrome phenotype in obese and
lean individuals (41) and is a typical fea-
ture of aging and lean insulin-resistant
offspring of type 2 diabetic individuals.
Targeted expansion of the visceral fat
mass by steroids and the selective surgical
removal of visceral fat in animals (49) and
omental fat in humans (50) support the
detrimental role of this depot. Numerous
large cohort studies have demonstrated
that excessive visceral, intermuscular,
and trunkal fat mass correlates with the
severity of metabolic dysregulation, car-
diovascular risk, and presence of type 2
diabetes (51-53). Smaller adipocyte size
was shown to be associated with in-
creased leg fat mass, whereas larger adi-
pocyte size was related to more trunkal fat
mass (53).

In summary, the inability of adipose
tissue to store FA and glucose, indepen-
dent of total body adiposity, appears to be
a common feature in all disorders charac-
terized by insulin resistance. The fat insu-
lin resistance is related to excessive FA
accumulation and cell enlargement. Oxi-
dative stress in fat cells is exacerbated by
reduced perfusion and relative hypoxia,
which promote chemo-attraction and in-
flammation. These abnormalities ad-
versely influence metabolic pathways
throughout the body in the form of lipotox-
icity, ectopic fat storage, systemic low-grade
inflammation, and insulin resistance. Epi-
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Figure 2—Proposed cascade of events via which abnormal adipose tissue development leads to insulin resistance in nonadipose organs. Ectopic fat
deposition, oxidative damage, and inflammation play a central role in the development of insulin resistance in muscle, liver, and other organs and

establish a negative reverberating cycle.

cardial, intermuscular, and visceral abdom-
inal fat depots are physiologically more
metabolically active and less insulin sen-
sitive. Their expansion exacerbates the
flow of substrates and cytokines both lo-
cally and to vital organs, provoking tri-
glyceride accumulation and oxidative
damage. In the liver, FA overflow reduces
insulin clearance, thereby promoting the
exposure of peripheral tissues, brain,
and vessels to hyperinsulinemia, which
exacerbates insulin resistance and
causes sympathetic activation. The cas-
cade of events hypothesized above is
summarized in Fig. 2.

PRIMACY: INSULIN
RESISTANCE STARTS IN
ADIPOSE TISSUE — Studies in
twins, who have been raised apart and
together (54), have documented that
body fat distribution and metabolic ab-
normalities are a clustering genetic trait.
Heritability in the Framingham study, in-
cluding genetic and early environment
contributions, was 57 % for subcutaneous
and 36% for visceral fat mass (51). As re-
viewed by Fernandez-Twinn and Ozanne
(55), because of intrauterine nutritional
and hormonal factors, low—birth weight
newborns have more fat and are at higher

risk of metabolic and cardiovascular dis-
eases in adulthood. It is noteworthy that
fat accretion occurs during the last trimes-
ter and maternal under-nutrition in ani-
mals during late pregnancy leads to
glucose intolerance in adult offspring, in
association with reduced adipose, but not
muscle GLUT4, content and increased
adipose tissue mass. The embryonic ori-
gin of adipose tissue, i.e., the paraxial me-
soderm, gives rise to truncal fat, whereas
the lateral plate mesoderm gives rise to fat
in the limbs (35), which also reflects the
relationship between fat distribution and
adult metabolic risk.

Recent human studies from our lab
(16) have documented that whereas sys-
temic inflammation, whole-body/skeletal
muscle/hepatic insulin resistance, hyper-
tension, dyslipidemia, and hyperglycemia
all are reversed by weight loss, adipose
tissue insulin resistance and hypoperfu-
sion are not. This is consistent with the
notion that GLUT4 translocation defects
are inducible and reversible in myocytes
but not in adipocytes (27). Like fat-
specific insulin resistance in obesity-
prone individuals, catecholamine
resistance of adipose tissue does not re-
gress with weight loss (56), partly ex-

plaining a tendency to regain the lost
weight.

In conclusion, fat-specific insulin re-
sistance appears to be an early and irre-
versible defect that can explain the causal
relationship between adipocyte dysfunc-
tion, extra-adipose tissue (i.e., muscle and
liver), and insulin resistance. The origin
of this association can be traced to genetic
and embryonic programming, long be-
fore the development of metabolic disease
in adulthood.
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